First ruthenium complexes with a chelating arene carbene ligand as catalytic precursors for alkene metathesis and cycloisomerisation[†]

Bekir Çetinkaya,** Serpil Demir,* Ismail Özdemir,* Loïc Toupet,* David Sémeril,* Christian Bruneau* and Pierre H. Dixneuf**

Letter

- ^a Department of Chemistry, University of Ege, 35100 Bornova, Izmir, Turkey. E-mail: cetinkaya@fenfak2.ege.edu.tr
- ^b Department of Chemistry, Inönü University, 44280, Malatya, Turkey
- ^c Groupe Matière Condensée et Matériaux (CNRS UMR 6626), Université de Rennes, Campus de Beaulieu, 35042 Rennes, France E-mail: loic.toupet@univ-rennes1.fr
- ^d Institut de Chimie (CNRS UMR 6509), Université de Rennes, Campus de Beaulieu, 35042 Rennes, France. E-mail: pierre.dixneuf@univ-rennes1.fr

Received (in Strasbourg, France) 3rd January 2001, Accepted 24th January 2001 First published as an Advance Article on the web 15th March 2001

Electron-rich carbene precursors 2 and 3, containing the imidazolidin-2-ylidene moiety with one (2) and two (3) pendent N-(2,4,6-trimethylbenzyl) groups, on reaction with $[RuCl_2(arene)]_2$ lead to ruthenium(II) complexes 5 and 6 containing the chelating 8-electron mixed arene–carbene ligand; the X-ray diffraction crystal structure of $RuCl_2\{\eta^1-CN[CH_2(\eta^6-2,4,6-Me_3C_6H_2)]CH_2CH_2N(CH_2CH_2OMe)\}$ 6, was established. These complexes are precursors of the unstable ruthenium-allenylidene intermediates 7 and 8, but are active catalysts either for selective catalytic alkene metathesis or cycloisomerization, depending on the nature of the 1,6-diene.

Heterocyclic carbene ligands, the imidazol-2-ylidene and imidazolidin-2-ylidene carbenes, are giving a new life to metal complexes as catalyst precursors for a variety of reactions, such as Heck and cross-coupling reactions, cyclopropanation or synthesis of furans. Recently, they have also been used as key ligands to promote alkene, and ene-yne cross metathesis. The chemistry of electron-rich and bulky imidazolidin-2-ylidene ruthenium complexes is a rapidly developing area in the search for more active alkene metathesis catalysts and the discovery of new catalytic reactions

It was shown previously that arene-ruthenium-allenylidene complexes associated with an electron-rich, bulky phosphine ligand promote alkene and enyne metathesis catalysis, ¹⁰ whereas their association with a bulky imidazol-2-ylidene ligand does not increase their catalytic activity. ¹¹ In our search to improve both the activity and stability of the catalytic species, we have attempted to generate allenylidene-ruthenium(II) intermediates, coordinated to an 8-electron ligand, containing an electron-releasing carbene ligand and a pendent chelating arene group.

We now wish to report (i) the first synthesis of 8-electron, chelating mixed arene imidazolidin-2-ylidene metal complexes, (ii) their transformation into new ruthenium-allenylidene catalyst species, (iii) which selectively lead either to diene cycloisomerisation or ring-closing metathesis (RCM) catalytic reactions, depending on the nature of the 1,6-diene substrate. In order to introduce an imidazolidin-2-ylidene ligand, containing a pendent aryl group, in a metal complex, the new electron-rich alkenes 2 and 3 were first prepared by dehydrochlorination from the corresponding imidazolidinium salts. 12

DOI: 10.1039/b100264n

The carbene precursors 2 and 3 were reacted with the ruthenium complex sources $[RuCl_2(arene)]_2$, 1a $(arene = C_6Me_6)$ and 1b (arene = p-cymene), in toluene at 100 °C for 4 h (Scheme 1). From 1a and the alkene 2, the carbene complex 4 was isolated in 78% yield. No corresponding complex was formed under similar conditions with the bulky precursor 3 and 1a. By contrast, from 1b the chelating complexes 5 and 6 were obtained in 84 and 91% yield, respectively. They result from the expected cleavage of the chloro bridges, but also from the ready displacement of the p-cymene ligand and coordination of the 8-electron mixed arene-carbene ligand. No intermediate still containing the p-cymene ligand, analogous to 4, could be observed during the reaction, and this is consistent with the rather weak p-cymene-ruthenium bonding. Heating complex 4, in xylenes at 140 °C for 3 h, led to intramolecular arene displacement and complete conversion into complex 5, which was isolated in 82% yield. ¹H NMR appeared to be a

[RuCl₂(arene)]₂ 1 1a: arene = C₆Me₆ **1b**: arene = *p*-cymene 1a/toluene 100 °C 1b/toluene 100 °C 2: $R = R^1$ 3: $R = R^2$ 5: R = R¹ **6**: $R = R^2$ (i) AgOTf (ii) HC≡CCPh₂OH OTf ⁻ $R^1 = CH_2CH_2OMe$ **7**: $R = R^1$ 8: $R = R^2$ Scheme 1

New J. Chem., 2001, **25**, 519–521

[†] Electronic supplementary information (ESI) available: synthetic procedures and selected spectroscopic data for 4–8. See http://www.rsc.org/suppdata/nj/b1/b100264n/

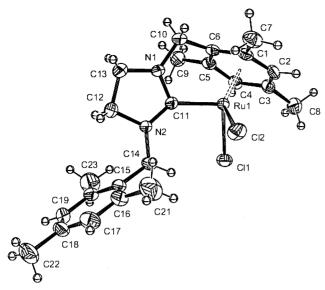


Fig. 1 ORTEP drawing illustrating the structure of complex 6.

powerful diagnostic tool for establishing the coordination of the mesityl group in complexes 5 and 6, as the aryl protons are shifted upfield by *ca.* 0.4 ppm, as shown in the ¹H NMR spectra of 4, 5 and 6.†

The X-ray study of complex 6 (Fig. 1, Table 1)¹³ shows both coordinated and non-coordinated mesityl groups, with a

Table 1 Selected bond lengths (Å) and angles (°) for 6

Ru(1)-C(11) 2.040(3) Ru(1)-C N(1)-C(11) 1.347(3) Ru(1)-C N(2)-C(11) 1.328(3) Ru(1)-C N(1)-C(10) 1.460(3) Ru(1)-C Ru(1)-C(6) 2.111(2) C(10)-C Ru(1)-C(1) 2.161(2) C(5)-C(6)	(5) 2.194(2) (2) 2.280(2) (3) 2.318(3) (6) 1.503(4) (5)-C(10) 121.9(3)
--	--

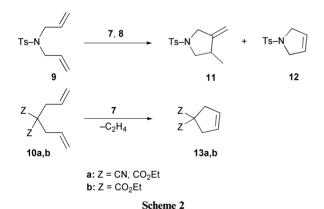


 Table 2
 Catalytic metathesis vs. cycloisomerisation of dienes 9 and 10

1,6-Diene	Catalyst ^a	Solvent	Time/h	Conv. (%) ^b	11 (%) ^b	12 (%) ^b	13 (%) ^b
9	7	C ₆ H ₅ Cl	4	100	94	6	_
9	7	Toluene	4	25	21	4	_
9	8	C ₆ H ₅ Cl	4	84	84	<u> </u>	_
9	8	Toluene	4	100	100	_	
10a	7	C_6H_5Cl	5	67	_	_	67
10a	7	Toluene	6	94	_	_	94
10b	7	C _c H _c Cl	5	87	_	_	87

^a The catalyst was prepared *in situ* from 5 or 6 (2.5 mol%), in 2.5 mL of solvent (chlorobenzene or toluene), AgOTf (2.5 mol%), HC≡CCPh₂OH (2.6 mol%), 15 min stirring to give 7 or 8, respectively. The substrate was then added and the solution heated at 80 °C for 4−6 h. ^b Determined by ¹H NMR.

cyclic carbene plane almost orthogonal to the coordinated mesityl group plane. It is noteworthy that in the η^1 -carbene complex 4, the cyclic carbene plane makes an angle of 87.0° with the ruthenium–arene axis, 14 whereas in complex 6 the corresponding angle is only 23.7°, illustrating the strong distorsion of the carbene ligand due to the coordination of one N-substituent.

Complexes 4, 5 and 6 were used as precursors for the catalytic alkene metathesis of diallyltosylamide at 80 °C and show no activity for RCM reactions. Complexes 5 and 6 were thus transformed into the corresponding allenylidene complexes on reaction at room temperature with 1 equiv. of silver triflate in dichloromethane and then with 1.1 equiv. of propargyl alcohol, HC=CCPh2OH, for 15 min according to the procedure described for $[Ru=C=C=CPh_2(Cl)(PR_3)(arene)]^{\frac{1}{4}}X^{-}$ catalyst precursors. Complexes 7 and 8 were quantitatively formed and were isolated as violet solids for ¹H NMR and catalytic studies. They were not stable enough for analysis and ¹³C NMR, likely due to the distortion of the carbene ligand. However, they showed a characteristic (C=C=C) IR absorption band at 1965 cm⁻¹, the ¹H NMR spectra revealed the presence of a coordinated mesityl moiety linked to a NCH₂-mesityl group with very different diastereotopic protons as well as the CPh₂ group.†

The *in situ*-generated intermediates 7 and 8 have been evaluated for the catalytic ring-closing metathesis transformation of the dienes 9 and 10 in chlorobenzene or toluene at 80 °C (Scheme 2). It was found that both catalyst precursors (2.5 mol%) were active. The nitrogen-containing diene 9 with both 7 and 8 selectively afforded the cycloisomerisation product 11 with only traces of the metathesis product 12 (Scheme 2, Table 2). By contrast, the 1,6-dienes 10a,b were transformed by the same catalyst 7 with very good selectivity into the carbocycles 13a,b arising from alkene metathesis.

These results show the dramatic influence of the solvent, but especially are a unique example of the influence of the nature of the diene on the resulting selective catalytic transformation: *metathesis* or *cycloisomerisation*. Currently, studies are underway to develop this type of catalyst and understand the duality in catalytic selectivities.

Experimental

A typical procedure for the preparation of the complexes 4, 5 and 6

A solution of alkene 2 or 3 (1.1 mmol) and ruthenium dimer 1a or 1b (1.0 mmol) in toluene (15 ml) was heated in a water bath (95–100 °C) for 4 h; after cooling to 25 °C, hexane (15 ml) was added and the solution cooled to -15 °C. The precipitated brown solid was filtered off and recrystallised from dichloromethane-hexane (10: 20 ml). 4, 5 and 6 were isolated in 78, 84 and 91% yields, respectively. Characterisation of all products is given in the ESI.†

Preparation of the ruthenium-allenylidene intermediates 7 and 8

[RuCl₂{[N-(2,4,6-trimethylbenzyl)-N-(2-methoxyethyl)]-imidazolidin-2-ylidene}], 5 or [RuCl₂{1,3-bis[N-(2,4,6-trimethylbenzyl)]imidazolidin-2-ylidene}], 6 (100 mg, 0.22 mmol), and 57 mg (0.22 mmol) of silver triflate in 5 ml of degassed CH_2Cl_2 were stirred for 15 min at room temperature. Then, 48 mg (0.23 mmol) of HC=CCPh₂OH was added and the solution was stirred again for 15 min at room temperature. After filtration with a canula paper filter, CH_2Cl_2 was evaporated under vacuum. Complete conversion was observed by 1H NMR based on the coordinated mesityl proton chemical shifts. Characterisation is given in the ESI.†

Acknowledgements

The authors are grateful to the CNRS and TUBITAK for the cooperative programme (no. 2504) and to the Türkiye National Planning organization (DPT-98-001) for financial support.

Notes and references

- (a) M. F. Lappert, J. Organomet. Chem., 1988, 358, 185; (b) W. A. Herrmann and C. Köcher, Angew. Chem., Int. Ed. Engl., 1997, 36, 2162; (c) D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev., 2000, 100, 39; (d) A. Fürstner, Angew. Chem., Int. Ed. Engl., 2000, 39, 3012.
- 2 (a) W. A. Herrmann, M. Elison, J. Fischer, C. Köcher and G. R. J. Artus, Angew. Chem., Int. Ed. Engl., 1995, 34, 2371; (b) W. A. Herrmann, C.-P. Reisinger and M. Spiegler, J. Organomet. Chem., 1998, 557, 93; (c) T. Weskamp, V. P. W. Böhm and W. A. Herrmann, J. Organomet. Chem., 1999, 585, 348; (d) C. Zhang, J. Huang, M. L. Trudell and S. P. Nolan, J. Org. Chem., 1999, 64, 3804; (e) D. S. McGuinness and K. S. Cavell, Organometallics, 2000, 19, 741 and references therein.
- B. Çetinkaya, I. Özdemir and P. H. Dixneuf, J. Organomet. Chem., 1997, 354, 153.

- 4 (a) H. Kücükbay, B. Çetinkaya, S. Guesmi and P. H. Dixneuf, Organometallics, 1996, 15, 2434; (b) B. Çetinkaya, I. Özdemir, C. Bruneau and P. H. Dixneuf, J. Mol. Catal. A, 1997, 118, L1; (c) B. Çetinkaya, I. Özdemir, C. Bruneau and P. H. Dixneuf, Eur. J. Inorg. Chem., 2000, 29.
- 5 (a) T. Weskamp, W. C. Schattenman, M. Spiegler and W. A. Herrmann, Angew. Chem., Int. Ed., 1998, 37, 2490; (b) L. Ackermann, A. Fürstner, T. Weskamp, F. J. Kohl and W. A. Herrmann, Tetrahedron Lett., 1999, 40, 4787.
- 6 (a) M. Scholl, T. M. Trnka, J. P. Morgan and R. H. Grubbs, Tetrahedron Lett., 1999, 40, 2247; (b) D. L. Wright, J. P. Schulte II and M. A. Page, Org. Lett., 2000, 2, 1847; (c) A. K. Chatterjee, J. P. Morgan, M. Scholl and R. H. Grubbs, J. Am. Chem. Soc., 2000, 122, 3783.
- 7 A. Briot, M. Bujard, V. Gouverneur, S. P. Nolan and C. Mioskowski, Org. Lett., 2000, 2, 1517.
- 8 D. Sémeril, M. Cléran, C. Bruneau and P. H. Dixneuf, *Adv. Synth. Catal.*, 2001, in press.
- 9 J. A. Smulik and S. T. Diver, Org. Lett., 2000, 2, 2271.
- (a) A. Fürstner, M. Liebl, C. W. Lehmann, M. Picquet, R. Kunz, C. Bruneau, D. Touchard and P. H. Dixneuf, Chem. Eur. J., 2000, 6, 1487; (b) M. Picquet, D. Touchard, C. Bruneau and P. H. Dixneuf, New J. Chem., 1999, 23, 141; (c) S. N. Osipov, O. I. Artyushin, A. F. Kolomiets, C. Bruneau and P. H. Dixneuf, Synlett, 2000, 7, 1031; (d) D. Sémeril, J. Le Nôtre, C. Bruneau, P. H. Dixneuf, A. F. Kolomiets and S. N. Osipov, New J. Chem., 2001, 25, 16; (e) A. Fürstner, A. F. Hill, M. Liebl and J. D. E. T. Wilton-Ely, Chem. Commun., 1999, 601.
- 11 L. Jafarpour, J. Huang, E. D. Stevens and S. P. Nolan, *Organometallics*, 1999, 18, 3760.
- 12 E. Çetinkaya, P. B. Hitchcock, H. A. Jasim, M. F. Lappert and K. Spyropoulos, J. Chem. Soc., Perkin Trans. 1, 1992, 561.
- 3 Crystal data for complex 6: $C_{23}H_{30}N_2RuCl_2$: M=506.46, monoclinic, space group $P2_1/c$, a=8.0230(1), b=8.2340(1), c=33.3210(5) Å, $\beta=90.401(5)^\circ$; U=2201.18(5) Å⁻³, T=293 K, Z=4, $\mu(\text{Mo-K}\alpha)=9.66$ cm⁻¹, 14669 integrated measured reflections, R=0.038, $R_{\rm w}=0.095$. Data were collected on a NONIUS Kappa CCD with graphite monochromated Mo-K α radiation. The entire structure was refined with the SHELX97 program by full-matrix least-square techniques. CCDC reference number 159033. See http://www.rsc.org/suppdata/nj/b1/b100264n/ for crystallographic files in CIF or other electronic format.
- 14 L. Toupet, unpublished results.